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Using Monte-Carlo techniques, we study polymer chain conformations near nanoparticles for dense
melts of high molecular weight. Our results indicate the presence of a thin interfacial region (1–2 nm in
thickness) within which polymer segments orient tangentially to the particle surface causing a stretching
and widening of the chain ellipsoid. That region is also characterized by an accumulation of chain ends
and a decrease in polymer density. Nanoparticles also affect polymer properties far away into the bulk.
Thus, at small particle radius, we observe an overall swelling of the polymer chains when the distance
between the centers of mass of nearest-neighbor particles becomes smaller than the radius of gyration of
the chains.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

It is now well accepted that the incorporation of nanoparticles
into polymeric matrices can lead to a novel range of materials with
properties unsurpassed in conventional composite systems. A full
grasp of the potential of these nanomaterials is however still in its
infancy in spite of the numerous modeling approaches that have
been proposed within the last decade. For an excellent up-to-date
review, see Ref. [1]. Although we have made progress towards an
understanding of the relationship between the composite proper-
ties and the individual characteristics of polymer and particles [2],
little is known however about the changes in structure and
dynamics of the bulk polymer brought upon by the presence of the
inclusions.

The issue of polymer chain configurations around nanoparticles
has received a lot of attention. Off-lattice simulations using Monte-
Carlo (MC) [3–5] and molecular dynamics [6,7] techniques have
indicated an ordering of the polymeric units into densely packed
shells around the inclusions. Bead–spring models [8–11] using high
coordination lattices also revealed that the ellipsoidal chains orient
their large semi-axis in a direction tangential to the filler surface.
Rotational isomeric state (RIS) studies for single ‘‘phantom’’ chains
[12–14] have shown a decrease in chain dimension for large
particles and short chains and a considerable increase for small
particles and long chains. These predictions however were not
confirmed by later MC investigations of realistically dense polymer
melts [3,16] which indicated a decrease in chain dimensions in both
All rights reserved.
cases, i.e. when the particles are much larger or slightly smaller
than the radius of gyration of the chains.

In view of their extensive computer time requirements, all
previous investigations have been restricted to relatively short
chains and moderate to low densities. Long chain polymers on the
other hand have been reported to be particularly sensitive to the
presence of nanoinclusions and the changes in entanglement
density around inclusions still remain an unresolved issue in
polymer physics [17,18]. In the present work, we focus on very
dense polymer melts with chain lengths typical of those for
commercial polymers. In our approach, the chains are simulated
on a simple cubic lattice and equilibrated using very efficient
computer algorithms based on the work of Pakula et al. [19,20].

2. Model

In our approach, the array of polymer chains and spherical
particles is generated on a simple cubic lattice with periodic
boundary conditions. The unit lattice length equals that of a statis-
tical segment [21] for the chains. For polyethylene, the segment has
length w1 nm and molecular weight w140, which corresponds to
w10 CH2 groups. The density r of the chains in the melt equals 0.92.
For simplicity, the present study focuses only on entropic constraints
and consideration of various adsorption potentials between the
polymer and the nanoparticles is relegated to future work.

Filling the lattice with particles and a dense melt of long poly-
mer chains is not a trivial task. In our approach, the lattice sites are
first divided into cubic blocks of two types:

(i) blocks representing the polymer melt and (ii) blocks
accounting for the particles. The blocks for the two types are
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Fig. 2. Elementary moves involving exchanges of crankshaft segments between two
chain strands at adjacent positions. Move (a) is for a crankshaft in chain 1 adjacent to
a single segment in chain 2. The move leads to elongation of chain 2 and shortening of
chain 1. In scheme (b), a crankshaft is selected at random along 2 and exchanged with
an adjacent segment in 1. For the short sequence illustrated in (a)þ (b), chain length is
restored.
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selected at random and according to the volume fraction of the
particles. Blocks of the first type contain the chains in a fully
ordered and folded configuration together with vacancies at
a volume fraction 1� r. (Herman’s orientation function for the
segments along the chains approximately equals þ0.5.) Blocks of
the second type are entirely filled in with vacancies and their
overall volume fraction equals the particle volume fraction Vp.
Before the start of the simulations, we also choose the location of
the centers of the future particles of radius rp. As equilibration is
initiated, vacancies moving into these centers become immobilized
and they turn into seeding sites for the growth of a particle. Growth
occurs through the addition of vacancies moving into nearest-
neighbor sites which then in turn become seeding sites. And so on
and so forth until all the lattice sites within a radius rp of the
original centers have been assigned as particle sites. Upon
completion of that process, equilibration of the chains continues
while all the particle sites remain frozen in place and averages of all
the quantities of interest are being taken.

Chain equilibration is performed using elementary moves of
two types. The first set of moves (Fig. 1) takes advantage of the
presence of unoccupied lattice sites (vacancies) and involves:

(i) Elementary rotations of a kink (a), crankshaft (b) or chain
end (c).

Crankshafts are not allowed to rotate more than 90 degrees in
order to prevent crossing of chains. Non-crossability of chains has
been found critical for observing a transition from Rouse to repta-
tion dynamics [22,23].

(ii) Slithering motion of a crankshaft leading to position exchange
(d) or chain-end extension (e).

The second set of moves (Fig. 2) involves exchange of crank-
shafts [19,20] between two chain strands at adjacent positions. In
Fig. 2a, chain 1 loses a crankshaft whereas chain 2 gains one,
leading to changes in chain length for both chains. In order to
conserve chain length, a loop is then initiated in which the next
exchange is made to occur between a crankshaft in chain 2 chosen
at random and an adjacent segment along a third chain strand, see
a
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e

Fig. 1. Elementary moves involving vacancies (B). Moves (a), (b) and (c) lead to
rotations of a kink, crankshaft and chain-end (C), respectively. Moves (d) and (e)
translate a crankshaft over a chain contour leading to position exchange (d) or chain-
end extension (e). All the moves are illustrated for a 2-d lattice. In a 3-d lattice, the
crankshaft (move b) is not allowed to rotate more than 90 degrees in order to prevent
crossing of chains (see text).
Fig. 2b. And so on and so forth. The loop closes when chain 1 regains
its lost crankshaft, as illustrated in Fig. 2a and b.

In our approach, the various moves in Figs. 1 and 2 are executed
sequentially. For each type of move, the lattice is swept in its
entirety during which a site and its local configuration of neighbors
are picked at random. If the configuration permits, the move is
executed; if not, it is rejected. It is important to stress that, in order
to ensure that the sequence of moves is commutative, all the lattice
are visited at random and only once for each type of move [24].
Although this may not be important for static equilibrium proper-
ties, it is crucial for a study of dynamics to be presented in
a forthcoming publication. Throughout the simulations, we have
also verified that our process obeys detailed balance, i.e. revers-
ibility for each of the moves depicted in Figs. 1 and 2. The latter is
a necessary condition for thermodynamic equilibrium.

During equilibration, ensemble averages for the various chain
characteristics are calculated. These include the average end-to-
end vector length Re and the gyration tensor for a chain.

Gij ¼ ð1=NÞ
XN

k¼1

�
Xi

k � XCM
i

��
Xk

j � XCM
j

�
(1)

in which Xk ¼ fXk
1;X

k
2;X

k
3g is the position vector of polymer site k

and the index CM refers the chain center of mass. We also evaluate
[8,25]

hTrGi ¼ hl1i þ hl2i þ hl3i ¼ R2
g (2)

in which Cl1D is the system average largest eigenvalue of G and Rg is
the average radius of gyration.

Equilibrium is considered to be achieved when steady plateau
values are reached for Re, Rg and Cli D (i¼ 1,3). For chains of length
N¼ 600, this was obtained after a time teq z 5�105 (in units of
attempted moves per lattice site). We found that teq typically
increases as wN2. Once equilibrium is reached, the simulation
continues and the quantities of interest are averaged over the entire
lattice and over up to 100 realizations taken at every Dt¼ 3�103

time intervals. For simplicity, the particles are placed in an ordered
body-centered-cubic configuration and they are not allowed to
move during the simulations. The results (to be presented in Section
3) are for lattices of up to 66� 66� 66 sites and chain length N¼ 600
(except for Fig. 3) together with a melt density r¼ 0.92.

3. Results and discussion

Fig. 3 shows our model results for the chain length dependence
of Rg

2 and Re
2 for a dense polymer melt with r¼ 0.92. The relation-

ship is linear and follows the asymptotic ideal chain limit.
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Fig. 3. Chain length dependence of the radius of gyration Rg and end-to-end
distance Re.
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Fig. 5. Dependence of polymer density on the distance from the closed particle for
chains of N¼ 600 segments. The density is normalized by the density in the bulk.
Notation is the same as in Fig. 4.
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R2
e ¼ 6R2

g (3)

which leads to confidence in the validity of our simulations.
Henceforth, unless otherwise specified, all our model results will be
for long chains with N¼ 600.

Fig. 4 plots the order parameter of short chain strands of 5
consecutive units as a function of the distance of their center of
mass from the surface of the closest particle. The order parameter is
measured by (3Ccos2 QD� 1)/2 in which Q denotes the angle
between the end-to-end vector of the strand and the vector radius
of the filler particle passing through the center of mass of the strand
[26]. The figure is for a 10% volume fraction of particles with
rp¼ 2 nm (C) and rp¼ 15 nm (B). The results clearly indicate the
presence of an interfacial region w1 nm in thickness within which
the chains orient tangentially to the filler surface. A small overshoot
in the order parameter is observed within a narrow region 1–2 nm
from the filler surface, indicating a slight radial ordering of the
chain segments. Our results of Fig. 4 are in agreement with those of
previous off-lattice simulations [3].

Fig. 5 shows our calculated values of the polymer density as
a function of the distance from the filler surface. The density has
been normalized by that (r¼ 0.92) in the bulk. Our data again point
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Fig. 4. Dependence of the orientation factor (3Ccos2 QD� 1)/2 on the distance from the
closest particle for chain strands of 5 consecutive units. The distance is measured
radially from the center of mass of the strand to the surface of the particle. Q denotes
the angle between the end-to-end vector of the strand and the vector radius of the
filler particle through the center of mass of the strand. The figure is for a 10% volume
fraction of particles with rp¼ 2 nm (C) and rp¼ 15 nm (B). The chain length is set at
N¼ 600.
to the presence of a narrow interfacial region – 1 nm thick – in
which the polymer density is as much as 15% lower than that in the
bulk. A small overshoot in density is observed at larger distances
from the particles. Our observations are in line with those of
Vacatello [3] although his results are more peculiar as they show
a series of repeated minima and maxima followed by a monotonic
decrease in density. That behavior was attributed to the particular
arrangements assumed by the filler particles in the various simu-
lations. Fig. 6 depicts our model predictions for the chain-end
density in the near vicinity of the particles. The density is again
normalized by that in the bulk. The data reveal that chain ends are
located preferentially within the 1 nm-thick particle/polymer
interface. This is in line with our previous observation (Fig. 5) of
a higher density of vacancies within that region. The latter indeed
allows for higher mobility – hence entropy – of the chain ends.

A detailed study of the eigenvalues l1 and l2 (Eq. (2)) is pre-
sented in Figs. 7 and 8 for chains of length N¼ 600 around particles
of radius rp¼ 2 nm (C) and rp¼ 15 nm (B). The values of l1 and l2

have been normalized by l3. The distance is measured radially from
the center of mass of a chain to the surface of the particle. At large
distances from the particles, our measured eigenvalues are in the
ratio l1:l2:l3¼12.1:2.8:1, which is close to that expected for
Gaussian chains 12.1:2.7:1. As one approaches the particles, the
situation becomes entirely different. For large rp¼ 15 nm (B), our
results indicate a substantial stretching (l1[) and widening
(l2[) of the chain ellipsoids. Our interpretation is that the latter
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Fig. 6. Dependence of the chain-end density on the distance from the closed particle
for chains of N¼ 600 segments. The density is normalized by the density in the bulk.
Notation is the same as in Fig. 4.
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Fig. 7. Dependence of the chain eigenvalue l1 on the distance from the closed particle
for chains of N¼ 600 segments. The eigenvalue is normalized by l3. The distance is
measured radially from the center of mass of the whole chain to the surface of the
particle. Notation is the same as in Fig. 4.

Fig. 9. Dense polymer melt (r¼ 0.92) of chains of length N¼ 600 with 10% of particles
of high radius rp¼ 15 nm. The particles are arranged in a body-centered-cubic
configuration. The figure only shows the two closest chains to the central particle.
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are ‘‘sacrificial’’ chains which loose their entropy and Gaussian
character in order for the other chains to retain their properties in
the bulk. At small rp¼ 2 nm (C), all the chains remain Gaussian
even at very small distances from the particles. Further analysis of
the case of small rp reveals a substantial swelling of the chains
throughout the bulk, see Figs. 10 and 11.

We now turn to a model illustration of the configuration of
chains closest to particles, see Fig. 9. The figure is for a dense
polymer melt (r¼ 0.92) of chains of length N¼ 600 with 10% of
particles of high radius rp¼ 15 nm. As mentioned earlier in
Section 2, the particles are arranged in a body-centered-cubic
configuration. The figure only shows the two closest chains to the
central particle. The illustration clearly reveals a complete wrap-
ping of the chains around the particle. This, in turn, confirms all of
our previously observed results on chain behavior at the interface
with a large particle, i.e. (i) tangential orientation of the segments;
(ii) accumulation of ends and (iii) stretching and widening of the
chain ellipsoids.

Figs. 10 and 11 plot the average values of Re
2 and Rg

2 in the bulk
polymer as a function of the particle radius rp for N¼ 600 statistical
segments and two different particle volume fractions: vp¼ 10% (C)
and vp¼ 20% (B). The figures indicate a swelling of the polymer
chains at rp< 3 nm and rp< 4 nm for low and high volume frac-
tions, respectively. A detailed analysis of our simulation data (see
Fig. 12) reveals that, within these two regimes, the distances
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Fig. 8. Dependence of the chain eigenvalue l2 on the distance from the closed particle
for chains of N¼ 600 segments. The eigenvalue is normalized by l3. The distance is
measured radially from the center of mass of the whole chain to the surface of the
particle. Notation is the same as in Fig. 4.
between the centers of mass of nearest-neighbor particles become
smaller than Rg. Figs. 10 and 11 also indicate a slight chain
contraction at 3< rp< 4 just past the swelling regime at vp¼ 10%
particles but not at higher vp¼ 20%. The reason for that dip is not
obviously clear. Further investigation of the results of Figs. 10 and 11
at low rp reveals no associated increase in the ratios l1/l3 and l2/l3,
which indicates no variation in the aspect ratio of the chain ellip-
soids. Our observation of a substantial swelling of long chains
N¼ 600 at small rp is in agreement with previous rotational
isomeric state (RIS) studies for single ‘‘phantom’’ chains [12–14].
Note however that the present work does not address the case
rp [ Rg so that the finding of chain contraction in Refs. [12–14] in
that limit is not verifiable here. Our results also disagree with those
of recent MC investigations [3,16] which indicated a decrease in
chain dimension for all rp Rg and rp [ Rg.
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Turning to comparison with experiment, Nakatani et al. [27]
have studied the dimensions of poly(dimethyl siloxane) (PDMS)
chains in the presence of polysilicate particles with radius
rp¼ 1 nm. The particles were treated with trimethylsilyl to improve
dispersion in the polymer. At 10% particles, they find a small
contraction of short chains with Rg¼ 3.4 nm and swelling for chains
of Rg¼ 7.6 nm and higher. Turning to our results of Fig. 12, the
distance between the centers of mass of nearest-neighbor particles
with rp¼ 1 nm and vp¼ 0.1 is about 5 nm. Thus, from our discus-
sion of Fig. 11, our model for that case would predict chain swelling
for Rg> 5 nm and contraction at smaller Rg values, in agreement
with experiment. In another experimental study, Tuteja et al. [28]
made well dispersed mixtures of protonated polysterene (PS) and
chemically identical nanoparticles with rp¼ 2, 2.7 and 3.6 nm. At
10% volume fraction of particles, they observe a swelling of PS
chains with Rg¼ 11 at all three rps. Our model results of Figs. 11 and
12 for that case predict chain swelling for rp¼ 2 and 2.7 nm but,
contraction at larger rp¼ 3.6 nm. Experimental results for shorter
chains with Rg¼ 5.7 nm are in disagreement with our model. Not
only do they indicate swelling at all three rps but, the extent of
swelling is found to decrease with a decrease in rp, in contrast with
our results of Fig. 11. Sen et al. [29] have investigated the case of PS
chains loaded with – untreated – silica nanospheres of radius
rp¼ 7 nm with volume fractions ranging from w3 to 27%. The PS
chains had Rg values ranging from w8 nm to 22 nm, which are
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a function of the particle radius rp, at two difference volume fractions: 10% (C) and
20% (B). Also indicated along the y-axis is the Rg value for chains of length N¼ 600
statistical segments.
higher than rp. Their results indicated no changes in polymer size,
which is in contrast to our model findings and the experimental
data of Refs. [27,28]. We believe that the origin of that disagreement
lies in the poor dispersion quality of their samples, which is quite
apparent from their TEM micrographs and would lead to a much
higher effective rp value.
4. Conclusions

Using Monte-Carlo techniques originally introduced by Pakula
et al. [19,20], we have studied polymer chain conformations near
nanoparticles for dense melts of high molecular weight. Our results
indicate the presence of a thin interfacial region within which
polymer segments orient tangentially to the particle surface
causing a stretching and widening of the chain ellipsoid. That
region is also characterized by an accumulation of chain ends and
a decrease in polymer density. These observations are in agreement
with those of previous off-lattice simulations [3–5]. Nanoparticles
also affect polymer properties far away into the bulk and, at small
particle radius, swelling of the polymer chains is observed in our
model simulations. It is proposed in Refs. [27,28] that a necessary
condition for polymer swelling in the bulk is Rg> rp. We find that
a sufficient condition is Rg> (center-to-center distance between
nearest-neighbor particles), see Fig. 12.

Consideration of various adsorption potentials between the
polymer and the nanoparticles will be presented in a forthcoming
publication. Future work will also include a detailed study of the
effect of nanoparticles on chain dynamics.
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